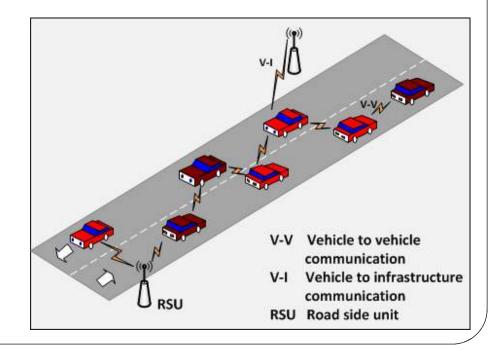
VANET PKI-based vs Id-based Scheme

Mr.Sam Banani

Computer Science Program School of Information and Communication Technology Sirindhorn International Institute of Technology Thammasat University


Outline:

VANET Overview

- Characteristics
- Requirement of securing VANET
- Attacks that threat to authentication
- secure VANET
- Network model
 - PKI-based scheme
 - Id-based scheme
- Summary

VANET Overview

- VANETs is a network which use wireless communication between vehicles or between vehicles and road side unit.
 - Dedicated Short-Range Communications (DSRCs).
 - Data rate up to 27 Mbps.
 - Range of transmission up to 1 Km.
 - Send message 100-300 ms
- The goals of VANET are to increase road safety and transportation efficiency.

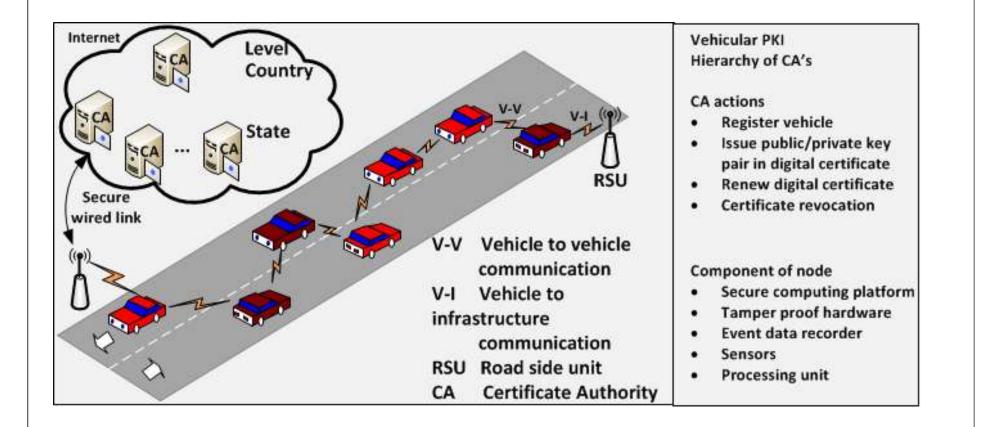
Characteristics of VANETs

- Nature of communication
 - Short range communication
 - The connection is not strong
- Dynamic and mobility
 - High speed
- Frequent information exchange
- Real-time process

Requirements for securing VANET

- Authentication
 - Entity authentication
 - Message integrity
- Non-repudiation
 - No entity can deny the message generated by itself.
- Availability
 - Provide network availability under jamming attacks
- Privacy
 - Provide message unlinkability and prevent driver's tracking
- Efficiency
 - Require low computation and communication overheads due to constraints on time

Attacks that threat to Authentication


Masquerading

- The attacker actively pretends to be another vehicle by using false identities and can be motivated by malicious or rational objectives.
- Message tempering
 - Any node acting as a relay can disrupt communications of other nodes. It can drop or corrupt messages, or meaningfully modify messages.
- GPS spoofing
 - An attacker can fool vehicles into thinking that they are in a different location by producing false readings in the GPS positioning system devices
- Sybil attack
 - Sending multiple message with different identity from one node
- Id disclosure
 - This attack discloses the identity of other nodes in the network and tracks the current location of the target node.

Secure VANETs

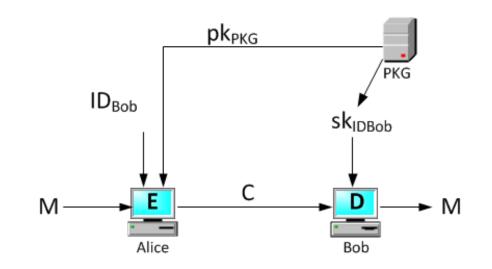
- There are mainly two categories of cryptography based algorithms is used for security:
 - PKI-based scheme
 - Pseudonyms-based
 - Group signature-based
 - Non-fully PKI-based scheme.
 - Identity-based scheme

VANETs General model

PKI-based examples:

- Procedure of at sending message V_1
 - 1) $V_1: M' = (M | | t)$
 - 2) V_1 : Sign_{V1} = E(M', PR_{V1})
 - 3) $V_1: EP = E(Sign_{V1}, PU_{CA})$
 - 4) $V_1: M'' = (M' | |EP)$
 - 5) $V_1: \text{Sign}_{W1} = E(M'', PR_{W1})$
 - 6) $V_1 \rightarrow * : (M'' \mid | Sign_{W1})$
- Procedure of Verifying message at receiver V₂:
 - 1) V_2 : (M" | |Sign_{W1}) separate to M"₁, Sign_{W1}
 - 2) $V_2 : M''_2 = D(Sign_{W1}, PU_{W1})$
 - V₂ : If (M"₁ == M"₂) then successfully message authenticate and integrity is verified.

PKI-based:

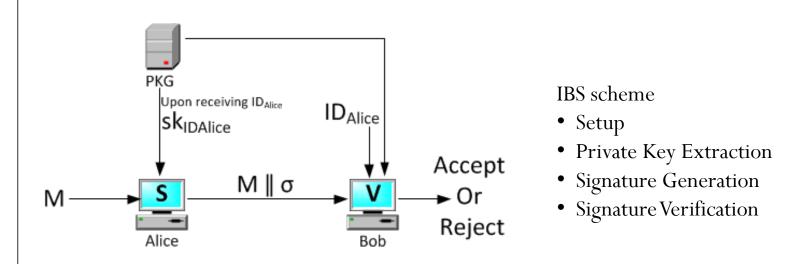

- Multiple Certificates Per OBU (Raya & Hubaux, 2007...)
 - Each OBU owns a set of certified public/private key pairs
 - A large set of keys needs to periodically renewed (during regular vehicle maintenance visits)
 - OBUs contact trust authorities through RSUs and send the created pseudonym and public key. Authorities send the built certificates back
 - Each key is used for a short period of time
- Suffering from a Sybil attack
 - A malicious OBU can pose as multiple vehicles
- Large overhead to revoke a OBU

PKI-based Group signature:

- Group Signatures (Lin et al., 2007...)
 - Group signature guarantees the unlinkability of the messages since group member can anonymously sign on behalf of the group
 - OBU uses a group signature to sign a message to prove that the signer is a valid OBU (not which OBU)
 - Group manager can trace the identity of a signer from the group signature and revoke the group member

Reduce the storage cost of multiple public/ private key pairs and the bandwidth consumption

ID-based Encryption (IBE)



IBE scheme

- Setup
- Private Key Extraction
- Encryption
- Decryption

- Procedure of at sending message at node A
 - 1) A $:T = E(M, PU_{ID-B})$
 - 2) A \longrightarrow B : T
- Verifying procedure at node B
 - 1) B: Authenticate itself to PKG, get Private Key
 - 2) B: $M = D(T, PR_{ID-B})$

Id-based signature scheme (IBS)

• Procedure of at sending message at node A

1) A :
$$\boldsymbol{\sigma} = E(M, PR_A)$$

- 2) A \longrightarrow B : ($\boldsymbol{\sigma} \parallel M$)
- Verifying procedure at node B
 - 1) B: Authenticate itself to PKG , get Private Key
 - 2) B: $M_1 = D(\boldsymbol{\sigma}, PU_{ID-A})$
 - 3) B: If $(M_1 = M_2)$ then successfully message authenticate and integrity is verified.

Summary:

- Id-based system, for verifying entity dose not require to store, fetch and verify the public key certificates of message signer from a third-party trusted authority.
- Id-based system reduces the system complexity and the cost for establishing and managing the public key.
- In id-based system can save on storage, communication bandwidth, and time.

Literature Review: